OVERDIAGNOSIS IN BREAST SCREENING

Ulrich Bick, Charité Berlin, IDKD Pearl 2017
OVERDIAGNOSIS IS THE DIAGNOSIS OF A DISEASE WHO WILL NEVER CAUSE SYMPTOMS OR DEATH DURING AN INDIVIDUALS ORDINARILY EXPECTED LIFETIME
Length Bias in Mammography Screening

• Slow growing cancers are more likely to be detected at mammography screening than aggressive tumors with high growth rate

• This is accentuated by the fact, that low-grade cancers more often show a strong desmoplastic reaction with typical spiculation on mammography

• Detection at mammography screening is even an independent prognostic factor, that means screen-detected cancers have a better prognosis than symptomatic cancers of the same size and stage
Overdiagnosis from Screening

- Probably somewhere between 10% and 20% of all cancers detected in mammography screening represent overdiagnosis.

- This means around 1% of women screened every two years for a period of twenty years from 50 to 70 will have a breast cancer detected and treated, which otherwise would not have surfaced clinically during their lifetime.
All Overdiagnosis explained by DCIS?

- Currently 20 - 25% of all screen detected breast cancers represent DCIS
- This compares to around 5% DCIS in a symptomatic cohort of before introduction of organized mammography screening
- Does all DCIS detected by screening in asymptomatic women represent overdiagnosis?
DCIS

- Very heterogeneous disease
- Low- and intermediate grade DCIS have an excellent long-term prognosis and will more likely represent overdiagnosis
- Lag time before progression to relevant invasive disease much shorter for high-grade DCIS
- Possibility of a distinct low-grade genetic pathway
- Significant contribution to number of mastectomies
Microcalcifications

○ Better visualization with digital mammography (increased detection of both DCIS independent of grade as well as invasive cancer)
 Bluekens et al. 2012 Radiology 265:707-714

○ Adequate pursuit of microcalcifications highly relevant for detection of small invasive cancers

○ Reliable prediction of tumor grade and invasion not possible from microcalcification morphology

○ Follow-up approach for microcalcifications unreliable and associated with risk of rapid progression
DCIS: Overdiagnosis vs. Overtreatment

- Biopsy of microcalcifications necessary to define nature of underlying abnormality
- Morbidity primarily related to therapy (extensive surgery, radiation, psychological effects of being labeled as a breast cancer patient)
- Close radiological surveillance alone may be an option for a certain subgroup of low-risk DCIS patients (*consider patient age!*)
- Possible use of MRI to exclude relevant high-grade or invasive disease?!
A Phase III trial of surgery versus active monitoring for LOw RISk DCIS Trial (LORIS) funded by the National Institute for Health Research Health Technology Assessment Programme (NIHR HTA)
Low Risk DCIS Trial (LORIS)

Criteria for Low Risk DCIS Trial (LORIS).

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Female, age ≥ 46 years</td>
<td>• A mass lesion clinically, on ultrasound scan or mammogram at the site of</td>
</tr>
<tr>
<td>• Screen-detected or incidental microcalcification</td>
<td>the microcalcification before biopsy</td>
</tr>
<tr>
<td>• Low risk DCIS on large volume VAB, confirmed by central pathology review</td>
<td>• Previous invasive breast cancer or DCIS</td>
</tr>
<tr>
<td>• Patient fit to undergo surgery</td>
<td>• Recent onset ipsilateral blood-stained nipple discharge.</td>
</tr>
<tr>
<td>• No previous breast cancer or DCIS diagnosis</td>
<td>• High-risk group for developing breast cancer</td>
</tr>
<tr>
<td>• Written informed consent</td>
<td>(as defined by NICE guidelines, or prior exposure to mantle radiotherapy)</td>
</tr>
</tbody>
</table>
Low-grade DCIS

- May be co-located with risk lesions (FEA, ADH) as well as benign fibrocystic changes within the same microcalcification area
- Possibility of false-negative stereotactic biopsy based on sampling
- Active surveillance approach for low-grade DCIS would also obviate the need for open excisional biopsy of some risk lesions

Transitions Between Flat Epithelial Atypia and Low-grade Ductal Carcinoma In Situ of the Breast
Overdiagnosis: *Invasive Cancers*

- Overdiagnosis in invasive cancers likely related to small slow-growing low-grade cancers
- Currently impossible to predict in advance, which cancer may represent overdiagnosis
- Size change over time excellent predictor of growth potential
- Morbidity from local excision usually low
Population-based Mammography Screening

Factors increasing the risk for overdiagnosis

- Length bias
- Discouragement of short-term follow-up
- Postmenopausal women as target population
- Current surrogate parameters and quality criteria in screening may set the wrong incentives
- Individualized strategies e.g. incorporating personal risk factors difficult to implement in mass screening
ACRIN 6666 Trial

Influence of tumor biology on mode of detection

<table>
<thead>
<tr>
<th>IDC Grade</th>
<th>Detected with Mammography</th>
<th>Contribution of Ultrasound</th>
<th>Contribution of MRI</th>
<th>Not detected by Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>21% (7/33)</td>
<td>46% (11/24)</td>
<td>57% (4/7)</td>
<td>38% (3/8)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>42% (14/33)</td>
<td>29% (7/24)</td>
<td>14% (1/7)</td>
<td>13% (1/8)</td>
</tr>
<tr>
<td>High</td>
<td>33% (11/33)</td>
<td>25% (6/24)</td>
<td>28% (2/7)</td>
<td>25% (2/8)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3% (1/33)</td>
<td>-</td>
<td>-</td>
<td>25% (2/8)</td>
</tr>
<tr>
<td>All</td>
<td>46% (33/72)</td>
<td>33% (24/72)</td>
<td>10% (7/72)</td>
<td>11% (8/72)</td>
</tr>
</tbody>
</table>
Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence

Archie Bleyer, M.D., and H. Gilbert Welch, M.D., M.P.H.

<table>
<thead>
<tr>
<th>Performance indicator</th>
<th>Desirable level</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Proportion of screened women subjected to early recall following diagnostic assessment</td>
<td>0%</td>
</tr>
<tr>
<td>16. Proportion of screen-detected cancers that are invasive</td>
<td>80-90%</td>
</tr>
<tr>
<td>17. Proportion of screen-detected cancers that are stage II+</td>
<td>< 30%</td>
</tr>
<tr>
<td>- initial screening examinations</td>
<td></td>
</tr>
<tr>
<td>- subsequent-regular screening examinations</td>
<td>< 25%</td>
</tr>
<tr>
<td>19. Proportion of invasive screen-detected cancers that are ≤ 10 mm in size</td>
<td>≥ 25%</td>
</tr>
<tr>
<td>- initial screening examinations</td>
<td></td>
</tr>
<tr>
<td>- subsequent-regular screening examinations</td>
<td>≥ 30%</td>
</tr>
<tr>
<td>20. Proportion of invasive screen-detected cancers that are < 15 mm in size</td>
<td>> 50%</td>
</tr>
</tbody>
</table>
New Quality Indicators

- Upper limit for (non high-grade) DCIS
- Incidence (in absolute terms) of advanced-stage breast cancer in the entire target population in comparison to the expected incidence
- Detection rates with breakdown by histological grade to estimate clinical relevance
What can the radiologist do?

- Inform patients about risk of overdiagnosis
- Do not continue to screen if significant comorbidities exist or remaining life expectancy is less than ten years (reduce overutilization)
- Integrate individual risk (age, family history, genetic information) into the decision making process
- More active use of short-term follow-up
- Encourage clinicians to reduce overtreatment
What can radiologists do?

- Inform patients about risk of overdiagnosis
- Do not continue to screen if significant co-morbidities exist or remaining life expectancy is less than ten years (reduce overutilization)
- Integrate individual risk (age, family history, genetic information) into the decision making process
- More active use of short-term follow-up
- Encourage clinicians to reduce overtreatment

Breast Cancer Screening's Triple O: Overdiagnosis, Overutilization, Overtreatment